skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Porth, Lucas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The power spectrum of the non-linearly evolved large-scale mass distribution recovers only a minority of the information available on the mass fluctuation amplitude. We investigate the recovery of this information in 2D ‘slabs’ of the mass distribution averaged over ≈100 h−1 Mpc along the line of sight, as might be obtained from photometric redshift surveys. We demonstrate a Hamiltonian Monte Carlo method to reconstruct the non-Gaussian mass distribution in slabs, under the assumption that the projected field is a point-transformed Gaussian random field, Poisson-sampled by galaxies. When applied to the Quijote N-body suite at z = 0.5 and at a transverse resolution of 2 h−1 Mpc, the method recovers ∼30 times more information than the 2D power spectrum in the well-sampled limit, recovering the Gaussian limit on information. At a more realistic galaxy sampling density of 0.01 h3 Mpc−3, shot noise reduces the information gain to a factor of 5 improvement over the power spectrum at resolutions of 4 h−1 Mpc or smaller. 
    more » « less